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Outline

• Motivation:
▶ Nonlinear impairments in optical communications.
⇒ Cost functions for nonlinear equalization are required.

• Contribution:
▶ New cost function for nonlinear equalization.
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Cost Functions for Nonlinear Equalizers

• Compensation of component non-linearities critical in short-reach optics.

• Two cost functions popular in ML and applied in optics:

MSE12 Mean Squared Error

CE34 Cross Entropy

1S. Zhang, F. Yaman, K. Nakamura, et al., “Field and lab experimental demonstration of nonlinear impairment
compensation using neural networks,” Nat. Commun., 2019.

2P. J. Freire, V. Neskornuik, A. Napoli, et al., “Complex-valued neural network design for mitigation of signal distortions in
optical links,” J. Light. Technol., 2021.

3M. Schädler, G. Böcherer, and S. Pachnicke, “Soft-demapping for short reach optical communication: A comparison of
deep neural networks and volterra series,” J. Light. Technol., 2021.

4S. Deligiannidis, A. Bogris, C. Mesaritakis, et al., “Compensation of fiber nonlinearities in digital coherent systems
leveraging long short-term memory neural networks,” J. Light. Technol., 2020.
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Mean Square Error:
Suitable for Nonlinear Equalizers?

X R f Y = X + Z , Z ∼ N (0, σ2)

label observation estimate

equalizer

• Mean square error: |X − f (R)|2.
• Cross-entropy: − logQX |Y (X |f (R)).
• Their Claim:5 if Y = X + Z with Gaussian Z :

MSE ≡ CE

• Our Claim: this statement is wrong!
• How did the authors arrive at this claim?

5Section II.A, P. J. Freire, J. E. Prilepsky, Y. Osadchuk, et al., “Neural networks based post-equalization in coherent optical
systems: Regression versus classification,” arXiv, 2021. [Online]. Available: https://arxiv.org/abs/2109.13843v3
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Likelihood Versus Posterior Probability

X R f Y

label observation estimate

Conditional Log-Likelihood and Mean
Squared Error6

• Assume

X = Y + Z , Z ∼ N (0, σ2)

• Cross-entropy is then

− logQX |Y (X |f (R)) = log
√

2πσ2 +
|X − f (R)|2

2σ2 log e

• Obviously,

MSE ≡ CE .

Clash of terminology:

Communications Goodfellow (2016)
Section 5.5.1

QX |Y posterior likelihood
QY |X likelihood

⇒ Supposedly, the author’s5 claim is based
on confusing the posterior QX |Y (·|y)
being Gaussian with the likelihood
QY |X (·|x) being Gaussian.

6Section 5.5.1 of I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016
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When MSE ≡ CE

X R f Y

label observation estimate

• Suppose

Y = X + Z

with Z and X independent Gaussian.

⇒ The posterior QX |Y (·|y) is Gaussian7.

⇒ In this case8

MSE ≡ CE

Consequences
• Information theory often assumes

Gaussian inputs, and in this case
MSE ≡ CE.

• When X and Y are oversampled, the
assumption QX |Y being Gaussian may
not be that bad, which explains why
MSE works well in this case.

• When X and Y are multiplexed digital
subcarrier signals, X is pretty much
Gaussian and MSE works well on the
multiplexed signals.

In the following, we consider practically
relevant 1 sample per symbol (SPS)
signals. As we will see, MSE ̸≡ CE.

4[8, Sec. 3.5] R. G. Gallager, Stochastic processes: theory for applications. Cambridge University Press, 2013
5[8, Sec. 10.7]
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Channel Model

Channel · · ·
Equalizer

f (·)
Demapper SD-FEC

x r y QX |Y (·|y)

The transmit symbols x are drawn from a finite alphabet X , e.g., QAM, ASK.

Most systems use binary FEC and the demapper output is a log-likelihood ratio (LLR)

ℓi = log
QBi |Y (0|y)
QBi |Y (1|y)

,

which can be calculated from QX |Y through

QBi |Y (b|y) =
∑

x∈X b
i

QX |Y (x |y),

where X b
i is the set of constellation points with the i-th label bit equal to b, b ∈ {0, 1}.
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Design Criterium for SD-FEC

Channel · · ·
Equalizer

f (·)
Demapper SD-FEC

x r y QX |Y (·|y)

An achievable information rate (AIR) of a system with demapper QX |Y is910

[
H(X )− E[− logQX |Y (X |Y )]

]+
As the input entropy H(X ) does not depend on the receiver, the design problem can be rephrased as

minimize
Equalizer, Demapper

E[− logQX |Y (X |Y )]

9N. Merhav, G. Kaplan, A. Lapidoth, et al., “On information rates for mismatched decoders,” IEEE Trans. Inf. Theory, 1994.
10G. Böcherer, P. Schulte, and F. Steiner, “Probabilistic shaping and forward error correction for fiber-optic communication

systems,” J. Light. Technol., 2019.
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MSE Training

minimizeMSE(X , f (R)) = minimize
f

E[|f (R)− X |2]

Channel · · ·
Equalizer

f (·)
Demapper SD-FEC

MSE(X ; f (R))

x r y QX |Y (·|y)

• It minimizes the pre-FEC bit error rate
(BER)

• Does not maximizes the AIR
• Hence suboptimal for SD-FEC systems
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CE Training

minimizeCE(X ,R) = minimize
QX|R

E[− logQX |R(X |R)]

Channel · · ·
Equalizer

Demapper
SD-FEC

CE(X ;R)

x r QX |R(·|r)

• It maximizes the AIR

• The trained device acts as an equalizer and demapper jointly

• Some algorithms, e.g. carrier and timing recovery, need access to the equalized signal which is

lost
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A New Cost Function

We wish to find a cost function which

• Maximizes the AIR for SD-FEC systems

• Achieves same pre-FEC BER as MSE cost function

• Preserves the block structure and the access to an equalized signal
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Entropy-Regularized MSE (I)

Our approach consists in optimizing the equalizer based on the demapper output

minimize
f

E[− logQX |Y (X |f (R))]

where we choose the AWGN demapper

QX |Y (x |y) =
PX (x)QY |X (y |x)

QY (y)

where PX is the input distribution and

QY |X (y |x) =
1

2πσ2 exp

[
− (y − x)2

2σ2

]
is a Gaussian channel and

QY (y) =
∑

x′∈X
PX (x ′)QY |X (y |x ′).

Note that x ∈ X and the demapper parameters are σ2 and X .
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Entropy-Regularized MSE (II)

Now, we solve the optimization problem

argmin
f

E[− logQX |Y (X |f (R))] = argmin
f

E
[
− log

PX (X )QY |X (f (R)|X )

QY (f (R))

]
= argmin

f
E
[
− log

1√
2πσ2

e
−|f (R)−X|2

2σ2
]
+ E

[
− logPX (X )

]
− E

[
− logQY (Y )

]
= argmin

f

1
2
log(2πσ2) +

log e
2σ2 E[|f (R)− X |2] + h(X )− E

[
− logQY (f (R))

]

After dropping all the terms which do not depend on f the optimization problem is reduced to

argmin
f

E[|f (R)− X |2]︸ ︷︷ ︸
MSE(X ,f (R))

− 2σ2E[− logQY (f (R))]︸ ︷︷ ︸
Entropy regularization

= argmin
f

MSE-X(X , f (R))
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BPSK Toy Example [11]

+
Equalizer

f (·)

Z ∼ N (0, σ2)

X ∈ {−1, 1} R Y = f (R)

MSE

argmin
f

E[|f (R)− X |2]

f ∗(R) = tanh(R)

−2 2
−1

1

R

f (R)

MSE-X

argmin
f

E[|f (R)− X |2]− 2σ2E[− logQY (f (R))]

f ∗(R) = R

−2 2
−1

1

R

f (R)
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Experimental Setup

ECL

DP-IQM

DAC/Amp.

Tx-DSP

EDFA
4× 20km

G.652

EDFA

90◦ Hybrid

Photodiodes

ECL

Oscilloscope

CD p→ CFO p→ MIMO p→ TR&CPE r
to equalizer

Rx-DSP

• 80 GBd DP-64QAM transmitted signal with gross data rate of 960 Gb/s and net rate 800 Gb/s
• CAZAC training sequence for frame and carrier frequency synchronization, and channel estimation.
• Four 120GSa/s digital-to-analog converters (DACs) generate an electrical signal amplified by four 60GHz

3dB-bandwidth amplifiers.
• A tunable 100kHz external cavity laser (ECL) generates a continuous wave that is modulated by a 32GHz

3dB-bandwidth DP-I/Q modulator.
• The receiver has an optical 90◦-hybrid and four 100GHz balanced photodiodes
• E/O conversion by an oscilloscope with 256GSa/s and 110GHz 3dB-bandwidth.
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Neural Networks Structure

Structure Cost function Name Activation
17|32|26|1 MSE, MSE-X NNeq ReLU
17|32|26|3 BCE NN1

joint ReLU
17|32|26|16|3 BCE NN2

joint ReLU

...

...

...
...

ri−⌊ nT
2 ⌋

ri yi

ri+⌊ nT
2 ⌋

...

...

...
...

ri−⌊ nT
2 ⌋

ri

ℓ1
i

ℓ2
i

ℓ3
i

ri+⌊ nT
2 ⌋

...

...

...
...

...

ri−⌊ nT
2 ⌋

ri

ℓ1
i

ℓ2
i

ℓ3
i

ri+⌊ nT
2 ⌋

Note: NNeq is followed by the demapper. The parameters σ2 and X are left constant during training, then
learned from the equalized train data, then fixed and applied to the test data.
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Constellation Plot

Constellation before equalizer
Constellation after MSE

equalizer
Constellation after MSE-X

equalizer
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Experimental Results - GMI
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Experimental Results - BER
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Volterra Nonlinear Equalization

• Linear FIR filter: use nT taps X1 = {ri−⌊ nT
2 ⌋, . . . , ri , . . . , ri+⌊ nT

2 ⌋}
• This corresponds to order 1:

F1 = {a : a ∈ X1} = X1

• Volterra equalizer adds higher orders:

F2 = {a · b : a, b ∈ X2}
F3 = {a · b · c : a, b, c ∈ X3}

...

Fk = {a1 · a2 · · · · · ak : a1, . . . , ak ∈ Xk}

• The features F1, . . . ,Fk are inputs to a linear FIR filter.
• The linear FIR filter has |F1|+ · · ·+ |Fk | taps.
• Our Volterra equalizer specified to the right has 492 taps.

ri−8

ri

ri+8

...

...

X1,X2

X3

X4,X5

Francesca Diedolo (TUM) 22



Experimental Results - VNLE
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Experimental Results - Comparison
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Summary and Future Work

Summary:

• MSE cost function is suboptimal for SD-FEC systems

• CE training causes the loss of the equalized signal, useful for DSP algorithms

• We proposed a new objective to train nonlinear equalizers:

MSE-X(f (R),X ) = E[|f (R)− X |2]− 2σ2E[− logQY (f (R))]

• We tested the cost function on experimental data and show compatibility with VNLE

Future work:

• Test on IM-DD systems
• Optimize the demapper parameters:

▶ Noise power parameter σ2

▶ Target constellation X
• Nonlinear equalization for multicarrier systems
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